opensource.google.com

Menu

Posts from September 2019

Google Summer of Code 2019 (Statistics Part 2)

Monday, September 30, 2019

2019 has been an epic year for Google Summer of Code as we celebrated 15 years of connecting university students from around the globe with 201 open source organizations big and small.

We want to congratulate our 1,134 students that complete GSoC 2019. Great work everyone!

Now that GSoC 2019 is over we would like to wrap up the program with some more statistics to round out the year.

Student Registrations

We had 30,922 students from 148 countries register for GSoC 2019 (that’s a 19.5% increase in registrations over last year, the previous record). Interest in GSoC clearly continues to grow and we’re excited to see it growing in all parts of the world.

For the first time ever we had students register from Bhutan, Fiji, Grenada, Papua New Guinea, South Sudan, and Swaziland.

Universities

The 1,276 students accepted into the GSoC 2019 program hailed from 6586 universities, of which, 164 have students participating for the first time in GSoC.

Schools with the most accepted students for GSoC 2019:

University # of Accepted Students
Indian Institute of Technology, Roorkee48
International Institute of Information Technology - Hyderabad29
Birla Institute of Technology and Science, Pilani (BITS Pilani)27
Guru Gobind Singh Indraprastha University (GGSIPU Dwarka)20
Indian Institute of Technology, Kanpur19
Indian Institute of Technology, Kharagpur19
Amrita University / Amrita Vishwa Vidyapeetham14
Delhi Technological University11
Indian Institute of Technology, Bombay11
Indraprastha Institute of Information and Technology, New Delhi11

Mentors

Each year we pore over gobs of data to extract some interesting statistics about the GSoC mentors. Here’s a quick synopsis of our 2019 crew:
  • Registered mentors: 2,815
  • Mentors with assigned student projects: 2,066
  • Mentors who have participated in GSoC for 10 or more years: 70
  • Mentors who have been a part of GSoC for 5 years or more: 307
  • Mentors that are former GSoC students: 691
  • Mentors that have also been involved in the Google Code-in program: 498
  • Percentage of new mentors: 35.84%
GSoC 2019 mentors are from all parts of the world, representing 81 countries!

Every year thousands of GSoC mentors help introduce the next generation to the world of open source software development—for that we are forever grateful. We can not stress enough that without our invaluable mentors the GSoC program would not exist. Mentorship is why GSoC has remained strong for 15 years, the relationships built between students and mentors have helped sustain the program and many of these communities. Sharing their passion for open source, our mentors have paved the road for generations of contributors to enter open source development.

Thank you to all of our mentors, organization administrators, and all of the “unofficial” mentors that help in our open source organization’s communities. Google Summer of Code is a community effort and we appreciate each and every one of you.

By Stephanie Taylor, Google Open Source

Unleashing Open Source Silicon

Friday, September 27, 2019

Open Source Silicon

We all know that open source software has changed the fundamental nature of the software industry and that Google generously adds fuel to this culture of openness and community through Google Summer of Code. What few people realize is that there is another major industry that is ripe for an open source overhaul—the silicon industry. And, this summer, a Google Summer of Code student helped open the floodgates.

If you search social media for “open source silicon,” you’ll find a few dozen names that pop up with some frequency. These folks are fanatically driving forward with open source circuit models and software for creating them. You’ll also find people clambering to jump aboard the RISC-V bandwagon. RISC-V, like x86, MIPS, and others before it, is a CPU “instruction set architecture,” and the mere fact that it is free of proprietary licenses has inspired countless open source implementations and an industry shake-up that has ARM quaking in its boots.

While this open source silicon community is a hotbed of enthusiasm, it is several decades behind the world of open source software. In this post, I’ll reveal the three reasons this movement has, thus far, not been able to take off like open source software, and I’ll explain why these three obstacles are all coming to a very sudden and dramatic end, that will unleash a tidal wave, catching the silicon industry by surprise. And you’ll see that Google Summer of Code, this year, played a pivotal role.

What’s Standing in the Way

So, why is coding and sharing circuit models any different from sharing software? Three reasons:
  1. Implementation Details: There’s more to worry about with hardware than software. Correct functionality is far from the only concern. Particular care must be given to physical implementation. And this detail must be modified for specific silicon technology and design constraints. As a result, leveraging open source logic can involve a substantial amount of rework.
  2. Access to software: While compilers for software tend to be open source, electronic design automation (EDA) tools for compiling hardware are traditionally proprietary and prohibitively expensive.
  3. Access to hardware: Unlike software, circuit models must be turned into silicon to be useful. Fabricating custom silicon is out of the question for a hobbyist, but field-programmable gate arrays (FPGAs) provide a more realistic option. These are chips that can be quickly reconfigured, or “programmed,” to implement any logic function. While FPGAs are within reach, they still cost money, and they are delivered by postal service, not a web browser. And, worst of all, it could take weeks to get an FPGA platform up and running and communicating with the open source logic.

Breaking Down the Barriers

Let’s look at what the open source community is doing to help:
  1. Implementation Details: There is a trend toward designing more abstractly, and leaving the details to tools. Open source tools can now compile C++ into silicon (with caveats). And several open source hardware description languages leverage modern software language innovations that make it easier to rework implementation details. The open source community has shown a greater willingness than industry to explore and adopt these languages. Though hardware remains fundamentally different from software, their differences are becoming less prominent.
  2. Access to software: Open source EDA software has marked some significant achievements in the past several years. Circuit designs have been implemented on FPGAs using 100% free and open source EDA tools. (Google Summer of Code has helped to fund a few open source EDA capabilities in projects under the Free and Open Source Silicon Foundation.) The US government has recognized the opportunity and is providing significant fuel to the fire through the Posh Open Source Hardware initiative. Being restricted to open source software can still be a bit limiting, but it is no longer prohibitive.
  3. Access to hardware: Hmmm. This is still a problem.
My personal contributions to this open source silicon movement stem from my startup, Redwood EDA. We directly target problem #1 by providing tools that support advanced (yet simpler) circuit modeling techniques. And, to address #2, we make all of our software freely available online for open source development. But neither open source EDA nor the efforts of my startup had been able to noticeably impact problem #3, access to hardware.

This is where bigger forces have stepped in. In the past few years, cloud providers have begun incorporating FPGAs into their datacenters. These are available to anyone with an internet connection and a credit card, bundled with industry-class EDA software, on a pay-per-use basis. Wow! This is the solution to hardware access! An open source developer can provide not only their hardware model but also the platform for which their model was designed. A user can download and go, just like they can with software! …in theory.

So here’s the rub. The learning curve for cloud FPGA platforms has been way too high for the open source community to latch on.

Our Project

With a bit of help from Politecnico di Milano’s NECST Lab and ThroughPuter Inc., I was able to get a project off the ground, and it attracted some attention for this year’s Google Summer of Code. I was happy to see an application from Ákos Hadnagy who had done some other ground-breaking work with me in the last Summer of Code, and he was accepted into the program. Together, this summer, we built infrastructure, automated flows, and wrote documentation (or more to the point, eliminated documentation), and now, instead of a month to ramp up, it is now possible to develop for this platform in a matter of minutes!
We dubbed our framework “1st CLaaS,” where we have coined the term “CLaaS” for custom logic as a service. Very simply, 1st CLaaS wraps a developer’s custom FPGA logic as a microservice. Standard web protocols can be used to stream bits to and from this logic, and platform details are hidden by the framework.

Implications and Wrap-up

So there is no longer anything standing in the way! Hobbyists can build and share hardware, and open source silicon can thrive. Just imagine the disruption this will have on the industry, which is currently driven by corporate giants. And with easy web integration, the opportunity and demand for hardware acceleration should rise, and we could start to see some interesting new capabilities on the web that were not imaginable until now.

Google certainly didn’t have this specific industry transformation in mind when starting Google Summer of Code, but I suspect the whole point of the program was to inspire and enable the unexpected. And it did!

If you’d like to contribute to 1st CLaaS or collaborate on some of the world’s first FPGA-accelerated web applications, we’d be more than happy to have you involved. I look forward to next year's applications.

By Steve Hoover, Redwood EDA, Google Summer of Code mentor

Google Code-in 2019 is Right Around the Corner!

Monday, September 23, 2019

This year is the 10th anniversary of the Google Code-in (GCI) contest! Students ages 13–17, globally, can learn about open source development by working on real projects, with mentorship from active developers. GCI begins on December 2, 2019 and runs for seven weeks, ending January 23, 2020.

Google Code-in is unique because students have the autonomy to select what they’re interested in working on from 2,500+ tasks created by open source organizations, all while having mentors available to answer questions as they work on tasks.

There are many questions that developers of any age ask themselves when they initially get involved in open source; from where to start to whether they have the expertise to truly support the organization. The beauty of GCI lies in the participating open source organizations who realize teens are often first time contributors, leading mentors who volunteer to come prepared with the patience and experience to help these newcomers join the open source community.
New contributors bring fresh perspectives, ideas, and enthusiasm into their open source communities, helping them thrive. Throughout the last 9 years, 58 GCI organizations helped 11,000 students from 108 countries make real contributions to open source projects; and to this day many of those students continue to participate in various open source communities and many have become mentors themselves! Some have even gone on to join Google Summer of Code (GSoC).

Contest participants work on a varied level of tasks that require anywhere from beginner to advanced skills in the following five categories:
  • Code: writing or refactoring
  • Documentation/Training: creating/editing documents and helping others learn more
  • Outreach/Research: community management, marketing, or studying problems and recommending solutions
  • Quality Assurance: testing and ensuring code is of high quality
  • Design: graphic design or user interface design
Organizations that are interested in mentoring students, can apply for Google Code-in beginning Thursday, October 10th. Google Code-in starts for students Monday, December 2nd!
Visit the contest site g.co/gci to learn more about the contest and find flyers, slide decks, timelines, and more.

By Radha Jhatakia, Google Open Source

Enabling Developers and Organizations to Use Differential privacy

Friday, September 6, 2019

Originally posted on the Google Developers Blog
By: Miguel Guevara, Product Manager, Privacy and Data Protection Office


Whether you're a city planner, a small business owner, or a software developer, gaining useful insights from data can help make services work better and answer important questions. But, without strong privacy protections, you risk losing the trust of your citizens, customers, and users.

Differentially-private data analysis is a principled approach that enables organizations to learn from the majority of their data while simultaneously ensuring that those results do not allow any individual's data to be distinguished or re-identified. This type of analysis can be implemented in a wide variety of ways and for many different purposes. For example, if you are a health researcher, you may want to compare the average amount of time patients remain admitted across various hospitals in order to determine if there are differences in care. Differential privacy is a high-assurance, analytic means of ensuring that use cases like this are addressed in a privacy-preserving manner.

Today, we’re rolling out the open-source version of the differential privacy library that helps power some of Google’s core products. To make the library easy for developers to use, we’re focusing on features that can be particularly difficult to execute from scratch, like automatically calculating bounds on user contributions. It is now freely available to any organization or developer that wants to use it.

A deeper look at the technology

Our open source library was designed to meet the needs of developers. In addition to being freely accessible, we wanted it to be easy to deploy and useful. 

Here are some of the key features of the library:
  • Statistical functions: Most common data science operations are supported by this release. Developers can compute counts, sums, averages, medians, and percentiles using our library.
  • Rigorous testing: Getting differential privacy right is challenging. Besides an extensive test suite, we’ve included an extensible ‘Stochastic Differential Privacy Model Checker library’ to help prevent mistakes.
  • Ready to use: The real utility of an open-source release is in answering the question “Can I use this?” That’s why we’ve included a PostgreSQL extension along with common recipes to get you started. We’ve described the details of our approach in a technical paper that we’ve just released today.
  • Modular: We designed the library so that it can be extended to include other functionalities such as additional mechanisms, aggregation functions, or privacy budget management.

Investing in new privacy technologies

We have driven the research and development of practical, differentially-private techniques since we released RAPPOR to help improve Chrome in 2014, and continue to spearhead their real-world application. 

We’ve used differentially private methods to create helpful features in our products, like how busy a business is over the course of a day or how popular a particular restaurant’s dish is in Google Maps, and improve Google Fi.


This year, we’ve announced several open-source, privacy technologies—Tensorflow Privacy, Tensorflow Federated, Private Join and Compute—and today’s launch adds to this growing list. We're excited to make this library broadly available and hope developers will consider leveraging it as they build out their comprehensive data privacy strategies. From medicine, to government, to business, and beyond, it’s our hope that these open-source tools will help produce insights that benefit everyone.

Acknowledgements
Software Engineers: Alain Forget, Bryant Gipson, Celia Zhang, Damien Desfontaines, Daniel Simmons-Marengo, Ian Pudney, Jin Fu, Michael Daub, Priyanka Sehgal, Royce Wilson, William Lam

That’s a Wrap for Google Summer of Code 2019

Tuesday, September 3, 2019

As the 15th year of Google Summer of Code (GSoC) comes to a close, we are pleased to announce that 1,134 students from 61 countries have successfully completed the 2019 program. Congratulations to all of our students and mentors who made this summer’s program so memorable!

Throughout the last 12 weeks, the GSoC students worked eagerly with 201 open source organizations and over 2,000 mentors from 72 countries—learning to work virtually on teams and developing complex pieces of code. The student projects are now public so feel free to take a look at the amazing efforts they put in over the summer.

Many open source communities rely on new perspectives and talent to keep their projects thriving and without student contributions like these, they wouldn’t be able to grow their communities; GSoC students assist in redesigning and enhancing these organizations’ codebases sometimes as first-time contributors not only to the project but to open source! This is just the beginning for GSoC students—many go on to become future mentors and even more become long-term committers and some will start their own open source projects in the years to come

And last but not least, we would like to thank the mentors and organization administrators who make GSoC possible. Their dedication to welcoming new student contributors into their communities is inspiring and vital to grow the open source community. Thank you all!

By Radha Jhatakia, Google Open Source
.