Posts from October 2022

Google funds open source silicon manufacturing shuttles for GlobalFoundries PDK

Monday, October 31, 2022

In August, we released the Process Design Kit (PDK) for the GlobalFoundries 180nm MCU technology platform under the Apache 2.0 license. This open source PDK, resulting from our ongoing pathfinding partnership with GlobalFoundries technology, offers open source silicon designers new capabilities for high volume production, affordability, and more voltage options by including the following standard cells:
  • Digital standard cells' libraries (7-track and 9-track)
  • Low (3.3V), Medium (5V, 6V) and High (10V) voltage devices
  • SRAM macros (64x8, 128x8, 256x8, 512x8)
  • I/O and primitives (Resistors, Capacitors, Transistors, eFuses) cells' libraries
Following the announcement about GlobalFoundries joining Google’s open source silicon initiative, we are now sponsoring a series of no-cost OpenMPW shuttle runs for the GF180MCU PDK in the coming months.

Those shuttles will leverage the existing OpenMPW shuttle infrastructure based on the OpenLane automated design flow with the same Caravel harness and the Efabless platform for project submissions.

Each shuttle run will select 40 projects based on the following criteria:
  • Design sources must be released publicly under an open source license.
  • Projects must be reproducible from design sources and the GF180MCU PDK.
  • Projects must be submitted within the shuttle deadline (projects submitted earlier get additional chances to be selected).
  • Projects must pass the pre-manufacturing checks.
The first shuttle GF-MPW-0 will be a test shuttle, with submissions open from Oct. 31, 2022 to Dec. 5, 2022. It will be used as a way to validate together with the community the integration of the new PDK with the open source silicon toolchain and the Caravel harness; further shuttles will have a longer project application window and improved testing.

We encourage you to re-submit your previous OpenMPW shuttle projects to this shuttle as a way to validate their portability across open source PDKs:
  • Go to
  • Navigate to the "Create a new Project" link.
  • Follow the instructions to integrate your project into the last version of the caravel_user_project template.
  • Make sure you select the right variant of the GF180MCU PDK (5LM_1TM_9K) by exporting the following environment variable PDK=gf180mcuC in your workspace prior to running any commands.
  • Submit your project for manufacturing on the Efabless platform.
We're excited to see designers and researchers leveraging this program by porting their existing projects that were submitted previously to OpenMPW shuttles, but also by designing new projects that target the GF180MCU PDK, finding paths together to research and advance the silicon ecosystem.

By Ethan Mahintorabi, Software Engineer and Johan Euphrosine, Developer Programs Engineer – Hardware Toolchains Team, and Aaron Cunningham, Technical Program Manager – Google Open Source Programs Office

Sigstore project announces general availability and v1.0 releases

Tuesday, October 25, 2022

Today, the Sigstore community announced the general availability of their free, community-operated certificate authority and transparency log services. In addition, two of Sigstore’s foundational projects, Fulcio and Rekor, published v1.0 releases denoting a commitment to API stability. Google is proud to celebrate these open source community milestones. 🎉

Sigstore is a standard for signing, verifying, and protecting open source software. With increased industry attention being given to software supply chain security, including the recent Executive Order on Cybersecurity, the ability to know and trust where software comes from has never been more important. Sigstore simplifies and automates the complex parts of digitally signing software—making this more accessible and trustworthy than ever before.

Beginning in 2020 as an open source collaboration between Red Hat and Google, the Sigstore project has grown into a vendor-neutral, community operated and designed project that is part of the Open Source Security Foundation (OpenSSF). The ecosystem has also continued to grow spanning multiple package managers and ecosystems, and now if you download a new release by open source projects like Python or Kubernetes, you’ll see that they’ve been signed by Sigstore.

Google is an active, contributing member of the Sigstore community. In addition to upstream code contributions, Google has contributed in several other ways:
We are part of a larger open source community helping develop and run Sigstore, and welcome new adopters and contributors! To learn more about getting started using Sigstore, the project documentation helps guide you through the process of signing and verifying your software. To get started contributing, several individual repositories within the Sigstore GitHub organization use “good first issue” labels to give a hint of approachable tasks. The project maintains a Slack community (use the invite to join) and regularly holds community meetings.

By Dave Lester – Google Open Source Programs Office, and Bob Callaway – Google Open Source Security Team

Kubeflow applies to become a CNCF incubating project

Monday, October 24, 2022

Google has pioneered AI and ML and has a history of innovative technology donations to the open source community (e.g. TensorFlow and Jax). Google is also the initial developer and largest contributor to Kubernetes, and brings with it a wealth of experience to the project and its community. Building an ML Platform on our state-of-the-art Google Kubernetes Engine (GKE), we have learned best practices from our users, and in 2017, we used that experience to create and open source the Kubeflow project.

In May 2020, with the v1.0 release, Kubeflow reached maturity across a core set of its stable applications. During that year, we also graduated Kubeflow Serving as an independent project, KServe, which is now incubating in Linux Foundation AI & Data.

Today, Kubeflow has developed into an end-to-end, extendable ML platform, with multiple distinct components to address specific stages of the ML lifecycle: model development (Kubeflow Notebooks), model training (Kubeflow Pipelines and Kubeflow Training Operator), model serving (KServe), and automated machine learning (Katib).

The Kubeflow project now has close to 200 contributors from over 30 organizations, and the Kubeflow community has hosted several summits and contributor meetups across the world. The broader Kubeflow ecosystem includes a number distributions across multiple cloud service providers and on-prem environments. Kubeflow’s powerful development experience helps data scientists build, train, and deploy their ML models, enabling enterprise ML operation teams to deploy and scale advanced workflows in a variety of infrastructures.

Google’s application for Kubeflow to become a CNCF incubating project is the next big milestone for the Kubeflow community, and we’re thrilled to see how developers will continue to build and innovate in ML using this project.

What's next? The pull request we’ve opened today to join the CNCF as an incubating project is only the first step. Google and the Kubeflow community will work with the CNCF and their Technical Oversight Committee (TOC), to meet the incubation stage requirements. While the due diligence and eventual TOC decision can take a few months, the Kubeflow project will continue developing and releasing throughout this process.

If Kubeflow is accepted into CNCF, the project’s assets will be transferred to the CNCF, including the source code, trademark, and website, and other collaboration and social media accounts. At Google, we believe that using open source comes with a responsibility to contribute, maintain, and improve those projects. In that spirit, we will continue supporting the Kubeflow project and work with the community towards the next level of innovation.

Thanks to everyone who has contributed to Kubeflow over the years! We are excited for what lays ahead for the Kubeflow community.

By Thea Lamkin, Senior Program Manager and Mark Chmarny, Senior Technical Program Manager – Google Open Source

ko applies to become a CNCF sandbox project

Tuesday, October 18, 2022

Back in 2018, the team at Google working on Knative needed a faster way to iterate on Kubernetes controllers. They created a new tool dedicated to deploying Go applications to Kubernetes without having to worry about container images. That tool has proven to be indispensable to the Knative community, so in March 2019, Google released it as a stand-alone open source project named ko.

Since then, ko has gained in popularity as a simple, fast, and secure container image builder for Go applications. More recently, the ko community has added, amongst many other features, multi-platform support and automatic SBOM generation. Today, like the original team at Google, many open source and enterprise development teams depend on ko to improve their developer productivity. The ko project is also increasingly used as a solution for a number of build use-cases, and is being integrated into a variety of third party CI/CD tools.

At Google, we believe that using open source comes with a responsibility to contribute, sustain, and improve the projects that make our ecosystem better. To support the next phase of community-driven innovation, enable net-new adoption patterns, and to further raise the bar in the container tool industry, we are excited to announce today that we have submitted ko as a sandbox project to the Cloud Native Computing Foundation (CNCF).

This step begins the process of transferring the ko trademark, IP, and code to CNCF. We are excited to see how the broader open source community will continue innovating with ko.

By Mark Chmarny – Google Open Source Programs Office

Announcing KataOS and Sparrow

Friday, October 14, 2022

As we find ourselves increasingly surrounded by smart devices that collect and process information from their environment, it's more important now than ever that we have a simple solution to build verifiably secure systems for embedded hardware. If the devices around us can't be mathematically proven to keep data secure, then the personally-identifiable data they collect—such as images of people and recordings of their voices—could be accessible to malicious software.

Unfortunately, system security is often treated as a software feature that can be added to existing systems or solved with an extra piece of ASIC hardware— this generally is not good enough. Our team in Google Research has set out to solve this problem by building a provably secure platform that's optimized for embedded devices that run ML applications. This is an ongoing project with plenty left to do, but we're excited to share some early details and invite others to collaborate on the platform so we can all build intelligent ambient systems that have security built-in by default.

To begin collaborating with others, we've open sourced several components for our secure operating system, called KataOS, on GitHub, as well as partnered with Antmicro on their Renode simulator and related frameworks. As the foundation for this new operating system, we chose seL4 as the microkernel because it puts security front and center; it is mathematically proven secure, with guaranteed confidentiality, integrity, and availability. Through the seL4 CAmkES framework, we're also able to provide statically-defined and analyzable system components. KataOS provides a verifiably-secure platform that protects the user's privacy because it is logically impossible for applications to breach the kernel's hardware security protections and the system components are verifiably secure. KataOS is also implemented almost entirely in Rust, which provides a strong starting point for software security, since it eliminates entire classes of bugs, such as off-by-one errors and buffer overflows.

The current GitHub release includes most of the KataOS core pieces, including the frameworks we use for Rust (such as the sel4-sys crate, which provides seL4 syscall APIs), an alternate rootserver written in Rust (needed for dynamic system-wide memory management), and the kernel modifications to seL4 that can reclaim the memory used by the rootserver. And we've collaborated with Antmicro to enable GDB debugging and simulation for our target hardware with Renode.

Internally, KataOS also is able to dynamically load and run third-party applications built outside of the CAmkES framework. At the moment, the code on Github does not include the required components to run these applications, but we hope to publish these features in the near future.

To prove-out a secure ambient system in its entirety, we're also building a reference implementation for KataOS called Sparrow, which combines KataOS with a secured hardware platform. So in addition to the logically-secure operating system kernel, Sparrow includes a logically-secure root of trust built with OpenTitan on a RISC-V architecture. However, for our initial release, we're targeting a more standard 64-bit ARM platform running in simulation with QEMU.

Our goal is to open source all of Sparrow, including all hardware and software designs. For now, we're just getting started with an early release of KataOS on GitHub. So this is just the beginning, and we hope you will join us in building a future where intelligent ambient ML systems are always trustworthy.

By Sam, Scott, and June – AmbiML Developers

Flutter SLSA Progress & Identity and Access Management through Infrastructure As Code

Tuesday, October 4, 2022

We are excited to announce several new achievements in Dart and Flutter's mission to harden security. We have achieved Supply Chain Levels for Software Artifacts (SLSA) Level 2 security on Flutter’s Cocoon application, reduced our Identity and Access Management permissions to the minimum required access, and implemented Infrastructure-as-Code to manage permissions for some of our applications. These achievements follow our recent success to enable Allstar and Security Scorecards.


Achieving Flutter’s Cocoon SLSA level 2: Cocoon application provides continuous integration orchestration for Flutter Infrastructure. Cocoon also helps integrate several CI services with Github and provides tools to make Github development easier. Achieving SLSA Level 2 for Cocoon means we have addressed all the security concerns of levels 1 and 2 across the application. Under SLSA Level 2, Cocoon has “extra resistance to specific threats” to its supply chain. The Google Open Source Security team has audited and validated our achievement of SLSA Level 2 for Cocoon.

Implementing Identity & Access Management (IAM) via Infrastructure-as-Code: We have implemented additional security hardening features by onboarding docs-flutter-dev, master-docs-flutter-dev, and flutter-dashboard to use Identity and Access Management through an Infrastructure-as-Code system. These projects host applications, provide public documentation for Flutter, and contain a dashboard website for Flutter build status.

Using our Infrastructure-as-Code approach, security permission changes require code changes, ensuring approval is granted before the change is made. This also means that changes to security permissions are audited through source control and contain associated reasoning for the change. Existing IAM roles for these applications have been pared so that the applications follow the Principle of Least Privilege.


  • Achieving SLSA Level 2 for Cocoon means we have addressed all the security concerns of levels 1 and 2 across the application. Under SLSA Level 2, Cocoon has “extra resistance to specific threats” to its supply chain.
  • Provenance is now generated for both, flutter-dashboard and auto-submit, artifacts through Cocoon’s automated build process. Provenance on these artifacts shows proof of their code source and tamper-proof build evidence. This work helps harden the security on the multiple tools used during the Cocoon build process: Google Cloud Platform, Cloudbuild, App Engine, and Artifact Registry.
  • Overall we addressed 83% of all SLSA requirements across all levels for the Cocoon application. We have identified the work across the application which will need to be completed for each level and category of SLSA compliance. Because of this, we know we are well positioned to continue future work toward SLSA Level 4.

Learnings and Best Practices

  1. Relatively small changes to the Cocoon application’s build process significantly increased the security of its supply chain. Google Cloud Build made this simple, since provenance metadata is created automatically during the Cloud Build process.
  2. Regulating IAM permissions through code changes adds many additional benefits and can make granting first time access simpler.
  3. Upgrading the SLSA level of an application sometimes requires varying efforts depending on the different factors of the application build process. Working towards SLSA level 4 will likely necessitate different configuration and code changes than required for SLSA level 2.

Coming Soon

Since this is the beginning of the Flutter and Dart journey toward greater SLSA level accomplishments, we hope to apply our learnings to more applications. We hope to begin work toward SLSA level 2 and beyond for more complex repositories like Flutter/flutter. Also, we hope to achieve an even higher level of SLSA compliance for the Cocoon application.


Supply Chain Levels for Software Artifacts (SLSA) is a security framework which outlines levels of supply chain security for an application as a checklist.

By Jesse Seales, Software Engineer – Dart and Flutter Security Working Group

Announcing the second group of Open Source Peer Bonus winners in 2022

Monday, October 3, 2022

We’re excited to announce our second group of Open Source Peer Bonus winners in 2022! 
The Google Open Source Peer Bonus program is designed to recognize external open source contributors nominated by Googlers for their open source contributions. This cycle, we are pleased to announce a total of 141 winners across 110+ projects, residing in 36 countries.

All open source contributors external to Google are eligible to be nominated. Whether you’re a software engineer, technical writer, community advocate, mentor, user experience designer, security expert, or educator, etc. you can be nominated for a peer bonus.

Our awards often come as a surprise to some while also providing motivation to others to responsibly contribute to open source. Learn more about what the Google Open Source Peer Bonus program means to our winners from this cycle:

“It was a very nice surprise to receive the Open Source Peer Bonus notification. I hope it can help lift contributors off, not only for their code contributions but for community contributions too.” – Oriol Abril Pla, ArviZ, PyMC

“The Kubernetes and CNCF ecosystem is massive. So, there are tons of opportunities to carve out your own niche in them. One of my key goals has been to make the project(s) more secure than how they were when I joined them. These awards are a welcome sprinkle of motivation to keep being a responsible open source contributor.” – Pushkar Joglekar, Kubernetes and CNCF

“I’m very pleased and proud to receive a Google Open Source Peer Bonus award. I was nominated for my contributions to The Good Docs Project where we are creating technical writing templates to help other projects create high-quality documentation. I’m passionate about the work we’re doing there, and have been hanging around the project since its inception in 2019. This is a friendly, inclusive community creating a safe space for folk to dip their toe into open source. We are global, and new folk are always welcome.” – Felicity Brand, The Good Docs Project

“I've been actively working on open source projects since my time at NIST with the FDS project starting in 2006. More recently with The Good Docs Project (TGDP) since 2020. It's been a very rewarding experience to contribute to TGDP, with such an amazing diversity of participants, perspectives and interests involved. To be given recognition through the OSPB program was a pleasant and unexpected surprise. While it's not at all what I am participating in the project for, it feels great to have someone else in the project bring my name up for this award. Thank you to TGDP and to Google for this honor.” – Bryan Klein, The Good Docs Project

“The Open Source Peer Bonus program is more than an appreciation for our contribution to the open source world. It encourages people to share their talent. To be the hero of the ones who are benefiting from your work, put your codes in the open source world.” – Nan YE, Orange Innovation China

“The TFX team and community is by far the most responsive, helpful and knowledgeable open-source project that I have worked on. It's a great feeling to be a part of the democratizing of productionised ML workflows, and being officially recognised on your efforts and contributions is the cherry on top.” – Jens Wiren, Analytical Impact Solutions

“The HTTP Archive team is welcoming to contributors and happily showed me the ropes until I got going. The project is invaluable to the web community, and working on the Web Almanac allowed me to work with domain experts on several topics, including Performance, JavaScript, and Third Parties.” – Kevin Farrugia, HTTP Archive

“Participating in these projects has been a great learning experience and has given me the opportunity to connect with a lot of great people. I am humble and grateful for the recognition and appreciation this program gives to the contributions made to these projects.” – Ole Markus With, kOps/etcdadm

“Google has been very generous in recognising VertFlow, which is a tool still in its infancy after the idea popped into my head a few months ago in conversation with a Google Cloud Customer Engineer. I hope this will encourage users to adopt VertFlow to reduce their carbon footprint when using GCP.” – Jack Lockyer-Stevens, VertFlow

Below is the list of current winners who gave us permission to thank them publicly:




Gregor Wolf

ABC A System for Sequential Synthesis and Verification

Alan Mishchenko

Accelerated HW Synthesis

Zihao Li


Daniel Oliveira

Android, Pithus, Exodus Privacy, PiRogue, Frida

Esther Onfroy

AndroidX Jetpack

Michał Zieliński


Dario Piotrowicz

Angular Language Service

Ivan Wan

Apache Airflow

Elad Kalif

Apache Beam

Alex Van Boxel

Apache Beam

Austin Bennett

Apache Beam

Moritz Mack

Apache Hop

Matt Casters


Avi Romanoff

ArviZ and PyMC

Oriol Abril Pla


Nicolò Ribaudo


Fabian Meumertzheim


Alex Kosolapov


Johnny Oshika


Dave Mielke


Jarred Sumner


Sagie Gur-Ari

Chrome DevTools Frontend

Percy Ley


Juba Borgohain


David Sanders


Amos Lim


Nathan Chancellor


Amandeep Singh


Ragashree M C Open Source meetup

Floor Drees

CoreDNS and Kubernetes

Chris O'Haver


Mykola Hohsadze


Tim Maffett


Simon McVittie


Mike McKerns


Ole-Martin Bratteng

Don't kill my app and merge to Google Android CTS

Petr Nálevka


Richard Gibson

Firebase Admin .NET SDK

Levi Muriuki

Firebase Admin Node.js SDK

Igor Savin

Firebase Admin Node.js SDK

Aras Abbasi

Firebase Apple SDK

Mike Hardy

Firebase Apple SDK

Jake Krog

Firebase Apple SDK

Alex Zchut

Firebase Arduino Client Library for ESP8266 and ESP32.

Suwatchai Klakerdpol

Firebase Crashlytics

Sergio Campamá


Fumito Ito


Tito Ciuro


Andi Pätzold


Peter Ammon


Thomas Heijligen


Felix Singer


Lei Zheng


Alexander Popov


Jorawar Singh

git and openssh

Fabian Stelzer

GNU Guix

Ludovic Courtès


Janneke Nieuwenhuizen


Iman Tumorang


Cassondra Foesch


Nils Knieling


Ruslan Nigmatullin


Daniel Micay


Asher Guo

Hello World gRPC-Gateway

Rajiv Singh


Thibault Duplessis


Charles Nutter


Sayak Paul


Jason Donenfeld


Mahamed Ali


Gabriel Freites

Kubernetes, CNCF

Pushkar Joglekar

Kubernetes (kOps, etcdadm etc)

Ciprian Hacman

Kubernetes (particularly kOps / etcdadm)

Ole Markus With

Kubernetes (particularly kOps / etcdadm)

Peter Rifel

Kubernetes Gateway API

Keith Mattix

KUnit/Linux kernel

Shuah Khan


Volodymyr Agafonkin


Yuan Tong


Tim Stack


Ralph Goers


Jonas Bernoulli


Oliver Tosky


Oleksii Pylypenko

moja global

Harsh Bardhan Mishra

mvt (Mobile Verification Toolkit)

Claudio Guarnieri

OSS educator and collaborator

José Luis Chiquete


nick black


Erik Gomez

OpenSSF Allstar

Yori Yano


Om Khandade


Chantel Chan


Xiang Chen

pcileech (and LeechCore subproject)

Ulf Frisk

Project Jupyter

Min Ragan-Kelley

Protocol Buffers

Yannic Bonenberger


Nick Mills-Barrett


Jack Lockyer-Stevens

PyTorch / XLA

Ronghang Hu


Nyall Dawson


Minsik Kim

Rich, Textualize

Will McGugan

Rust for Linux

Björn Roy Baron


Miki Huang


David Mulder


Varun Sharma


Naveen Srinivasan


Matthew Miller


Michael Lieberman


Leonard BrĂĽnings


Michael Bayer


Jeremiah Orians


Lorenz Walthert


Alain Dargelas


Rich Harris


Jordan Harband


Parth Patel


Andrew Bayer


Stefano Fabri


Jason Zaman

TensorFlow Lite Examples - Android

Nan Ye


Ukjae Jeong


Jens Wiren


Gerard Casas Saez


Hannes Hapke


Martin Bomio


Tomasz Mackowiak

The Good Docs Project

Aaron Peters

The Good Docs Project

Felicity Brand

The Good Docs Project

Ian Nguyen

The Good Docs Project

Bryan Klein

The Good Docs Project

Serena Jolley


Samuel Dionne-Riel


Teppei Fukuda


Marina Moore


Ao Wang


Feargus O'Gorman

W3C WebGPU standard

Mehmet Oguz Derin


Volker Buzek

Web Almanac

Kevin Farrugia


Byoungchan Lee

Congratulations to our winners above and thank you for your open source contributions. We look forward to your continued support and efforts in the open source communities. Additionally, thank you to all of the Googlers who submitted nominations and our review committee members for reviewing nominations.

By Joe Sylvanovich – Google Open Source Programs Office